当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设总体X~N(μ 102) 若要使μ的置信度为①0.95;②0.99的置信区间的长度不超过5 问样


设总体X~N(μ,102),若要使μ的置信度为①0.95;②0.99的置信区间的长度不超过5,问样本容量n至少应为多少?

请帮忙给出正确答案和分析,谢谢!

参考答案
您可能感兴趣的试题
  • 设总体X~N(μ,σ2),且μ,σ均未知。若样本容量和样本值不变,则总体均值μ的置信区间长度L与置信度1-α的

  • 设总体X~N(μ σ2) 其中σ2已知 则总体均值μ的置信区间长度l与置信度1-α的关系是()

  • 设总体X~N(μ σ2) σ2已知 若样本容量和置信度均不变 则对于不同的样本观测值 总体均值μ的置信区间

  • 设总体X~N(μ σ2) μ已知 σ2未知 X1 X2 … Xn是来自X的样本 求σ2的置信度为1-α的单侧置信上限。

  • 设总体X~N(μ σ2) 其中μ σ2未知.X1 X2 … Xn是来自总体X的样本 L是均值μ的置信度为1-α的置信区间的长度 求E(L

  • 设总体X~N(μ σ2) 其中σ2已知 则总体均值μ的置信区间长度l与置信度1-α的关系是( ) A.当1-a缩小时 l缩短 B