当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

已知3阶矩阵A和3维列向量X 使得向量组x Ax A2x线性无关 且满足A3x=3Ax-2A2x.


已知3阶矩阵A和3维列向量X,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x.

参考答案
您可能感兴趣的试题
  • 已知3维列向量α β满足αTβ=3 设3阶矩阵A=βαT 则( )。A.β是A的属于特征值0的特征

  • 已知3维列向量α β满足αTβ=3 设3阶矩阵A=βαT 则( )。A.β是A的属于特征值0的特征

  • 已知3维列向量α β满足αTβ=3 设3阶矩阵A=βαT 则( )。A.β是A的属于特征值0的特征

  • 设A是3阶实对称矩阵 P是3阶可逆矩阵 B=P-1AP 已知a是A的属于特征值λ的特征向量 则B的

  • 已知三维列向量α β满足αTβ=3 设三阶矩阵A=βαT 则: A.β是A的属于特征值0的特征向量B.α是

  • 设A是n阶实对称矩阵 P是n阶可逆矩阵 已知n维列向量α是A的属于特征值A的特征向量 则矩阵(P-1AP)T