问题
-
随机初相信号X(t)=Acos(ω0t+φ),其中A和ω0均为常量,φ为服从[0,2π]上均匀分布的随机变量。已知mX(t)=0,RX(τ)=A
-
试求随机过程{X(t)=Acosωt,t∈R}的一维分布函数与概率密度,其中A服从标准正态分布N(0,1)。
-
设{X(t)=Acosωt-Bsinωt,t∈(-∞,+∞)},其中A,B是相互独立且服从相同正态分布N(0,σ2)的随机变量,ω为常数。试求:
-
试证明随机过程{X(t)=Acosωt+Bsinωt t∈(-∞ +∞)}(ω为常数)是宽平稳过程
-
设观测信号 x(t)=bcos(ω2t+θ)+n(t) 0≤t≤T 其中 n(t)是均值为零 功率
-
考虑随机过程Z(t)=X(t)cosω0t-Y(t)sinω0t 其中X(t) Y(t)是高斯的