当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设随机过程 X(t)=acos(Ωt+Θ),-∞<t<+∞, 其中a是常数,随机变量Θ~U(0,2π),随机变量Ω具有概率密度f(x),设f(x)


设随机过程

  X(t)=acos(Ωt+Θ),-∞<t<+∞,

  其中a是常数,随机变量Θ~U(0,2π),随机变量Ω具有概率密度f(x),设f(x)连续且为偶函数,Θ与Ω相互独立.试证X(t)是平稳过程,且其谱密度为

  SX(ω)=a2πf(ω).

参考答案
您可能感兴趣的试题
  • 随机初相信号X(t)=Acos(ω0t+φ),其中A和ω0均为常量,φ为服从[0,2π]上均匀分布的随机变量。已知mX(t)=0,RX(τ)=A

  • 试求随机过程{X(t)=Acosωt,t∈R}的一维分布函数与概率密度,其中A服从标准正态分布N(0,1)。

  • 设{X(t)=Acosωt-Bsinωt,t∈(-∞,+∞)},其中A,B是相互独立且服从相同正态分布N(0,σ2)的随机变量,ω为常数。试求:

  • 试证明随机过程{X(t)=Acosωt+Bsinωt t∈(-∞ +∞)}(ω为常数)是宽平稳过程

  • 设观测信号 x(t)=bcos(ω2t+θ)+n(t) 0≤t≤T 其中 n(t)是均值为零 功率

  • 考虑随机过程Z(t)=X(t)cosω0t-Y(t)sinω0t 其中X(t) Y(t)是高斯的