问题
-
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0 f(0)≠0 f(0)≠0.证明:存在唯一的一组实数λ
-
设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)证明:存在ξ∈(
-
设f(x)在x=x0可导 且f′(x0)=-2 则lim△x→0f(x0)-f(x0-△x)△x等于( )A.0B.2C.-2D.不存在
-
函数f(x)在点x0导口函数f(x)在点x的左右导数都存在且相等。()
-
函数f(x)当x→x0处左极限与右极限都存在且相等是函数f(x)当x→x0极限存在的()条件。
-
设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)
冀公网安备 13070302000102号