当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)


设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).

请帮忙给出正确答案和分析,谢谢!

参考答案
您可能感兴趣的试题
  • 设连续函数列{fn(x))在[α,b]上一致收敛于f(x),而g(x)在(-∞,+∞)上连续。证明:{g(fn(x)) }在[α,b]上

  • 设f(x)是-∞<x<∞上的连续函数。g(x)是a≤x≤b上的可测函数 则f(g(x))是可测函数

  • 设函数f(x) g(x)在[a b]上连续 且在[a b]区间积分∫f(x)dx=∫g(x)dx

  • 设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f

  • 设函数f(x)和g(x)和[a b]上存在二阶导数 并且g"(x)≠0 f(a)=f(b)=g(a)=g(b)=0 试证 (1)在开区间(a b)

  • 设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)证明:存在ξ∈(