问题
-
设连续函数列{fn(x))在[α,b]上一致收敛于f(x),而g(x)在(-∞,+∞)上连续。证明:{g(fn(x)) }在[α,b]上
-
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f
-
设f(x)在区间[a b]上连续 g(x)在区间[a b]上连续且不变号 证明至少存在一点ξ∈[a b] 使下式成立 (积分第一
-
设f(x) g(x)在[a b]上连续 且f(x)≥g(x) 则( ). A.∫abf(x)dx≥∫abg(x)dx; B.∫abf(x)dx≤∫abg(x)dx; C.∫f(x
-
设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)证明:存在ξ∈(
-
设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)