问题
-
如果二元函数z=f(x,y)在点M0(x0,y0)处取得极值,那么一元函数φ(x)=f(x,y0)及ψ(y)=f(x0,y)分别在点x=x0,y=y0
-
设fx,fy和fyx在点(x0,y0)的某邻域内存在,fyx在点(x0,y0)连续,证明fxy(x0,y0)也存在,且fxy(x0,y0)=fyx(x0,y0
-
设函数f(x y)在点(x0 y0)处不连续 则f(x y)在点(x0 y0)处() A.极限不存
-
设fx(x y)在(x0 y0)的某邻域内存在且在(x0 y0)处连续 又fy(x y)存在 证明f(x y)在点(x0 y0)处可微
-
设函数f(x)和g(x)均在点x0的某一邻域内有定义 f(x)在x0处可导 f(x0)=0 g(x)在x0处连续 试讨论f(x)g(x)在x0
-
考虑二元函数f(x y)的下面四条性质: (1)f(x y)在点(x0 y0)连续; (2)fx(x y) fy(x y)在点(x0 y0)连续; (3