问题
-
设函数f(x y)在点(x0 y0)处不连续 则f(x y)在点(x0 y0)处() A.极限不存
-
曲线y=f(x)在点(x0 f(x0))的切线存在是函数y=f(x)在x0处可导的 A.充分条件
-
设fx(x y)在(x0 y0)的某邻域内存在且在(x0 y0)处连续 又fy(x y)存在 证明f(x y)在点(x0 y0)处可微
-
考虑二元函数f(x y)的下面4条性质: ①f(x y)在点(x0 y0)处连续 ②f(x y)在点(x0 y0)处的两个偏导数连续. ③
-
设函数f(x)在x=a处可导 则f(x)在x=a处( )A.极限不一定存在B.不一定连续C.可微D.不一定可微
-
二元函数z=f(x y)在点(x0 y0)处偏导数存在是二元函数z=f(x y)在点(x0 y0)处可微的( )条件A.充分