问题
-
如果A为n阶(),则存在一个实的非奇异下三角阵,使得A=LL^TA、对称正定矩阵B、对称矩阵C、正定矩阵D
-
n阶对称矩阵A是正定矩阵的充分必要条件是()。 A.|A|>0 B.各阶顺序主子式均为正数 C.负惯性指标为零 D.
-
设A B均为n阶实对称矩阵 且A正定.证明:
-
n阶实对称矩阵A为正定矩阵 则下列不成立的是( )。 A.所有K级子式为正(K=1 2 … n)B.A的
-
设A是n阶实对称矩阵 B是n阶实反对称矩阵 则下列矩阵中 必可用正交替换化为对角矩阵的为().
-
n阶对称矩阵A是正定矩阵的充分必要条件是( )。 A.|A|>0 B.各阶顺序主子式均为正数 C.负惯性指标为零 D.