当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设f(x)是定义在上的连续函数 对任意的t∈R1 令Et={x∈E:f(x)>t} 试证明存在Rn中包含E的开集Gt 使得Et=E∩Gt.


设f(x)是定义在上的连续函数,对任意的t∈R1,令Et={x∈E:f(x)>t},试证明存在Rn中包含E的开集Gt,使得Et=E∩Gt.

设f(x)是定义在(-∞,a)上的连续函数,对任意的t∈R1,令TEt={x∈E:f(x)>t},试证明存在Rn中包含E的开集TGt,使得Et=E∩Gt

参考答案
您可能感兴趣的试题
  • 设定义域在R上的函数f(x)=x|x|,则f(x)是A.奇函数,增函数 B.偶函数,增函数 C.奇函数,减函

  • 设定义域在R上的函数,f(x)=x|x|,则f(x)是A.奇函数,增函数 B.偶函数,增函数 C.奇函数,

  • 设二阶矩过程{X(t),t∈[a,b]}的自相关函数RX(s,t)在[a,b]×[a,b]上连续,若f(t)是[a,b]上的连续函数,试证:

  • 设f(x)是定义在[-a a]上的任意函数 则下列答案中哪个函数不是偶函数?A.f(x)+f(-x

  • 设f是拓扑空间(X τ)上的任意复函数 定义 φ(x V)=sup{|f(s)-f(t)|:s t

  • 已知f(x)是定义在(0 +∞) 上的非负可导函数 且满足xf′(x)+f(x)≤0 对任意的0<a<b 则必有( ).A.af(b)≤b