问题
-
对模型Yt=β0+β1X1t+β2X2t+β3Yt-1+μt,假设Yt-1与μt相关。为了消除该相关性,采用工具变量法:先求Yt关于X1t与X2
-
已知消费模型 Yt=α0+α1X1t+α2X2t+μt 其中,Yt为消费支出,X1t为个人可支配收入,X2t为消费者的流动资产,且
-
已知消费模型 Yt=α0+α1X1t+α2X2t+μt 其中,Yt为消费支出,X1t为个人可支配收入,X2t为消费者的流动资产,且
-
在经典线性模型基本假定下,对含有三个自变量的多元回归模型 Y=β0+β1X1+β2X2+β3X3+μ 你想检验的虚拟假设是
-
对回归模型Yi=β0β1χi+μi进行检验时 通常假定μi服从()。A.N(0 σ12)B.t(n
-
假设两时间序列Xt与Yt都是I(1)序列 但对某个不为0的β 使Yt-βXt是I(0)。证明:对于
冀公网安备 13070302000102号