问题
-
设f(x,y)为连续函数,且f(x,y)=f(y,x),证明:
-
设E×[0,1]上f(x,y)满足:f(x,y)是x∈E上的可测函数,且f(x,y)是y∈[0,1]上的连续函数,试证明: (i)f(x,y)是E×[0
-
设方程F(x-z y-z)=0确定了函数z=z(x y) F(u v)具有连续偏导数 且Fˊu+Fˊv≠0 则=[ ]A.0B.1C.-1D
-
已知函数f(x y)具有二阶连续偏导数 且f(1 y)=0 f(x 1)=0 其中D={(x y)|0≤x≤1 0≤y≤1} 计算二重积
-
对于a>1 存在R+=(0 +o∞)到R.上的连续严格递增函数f(x) 使得f(xy)=f(x)+f(y)且f(a)=1。()
-
若函数x=x(t) y=y(t)对可导且x’(t)≠0 又x=x(t)的反函数存在且可导 则dy/dx=()