问题
-
已知函数f(x y)具有二阶连续偏导数 且f(1 y)=0 f(x 1)=0 其中D={(x y)|0≤x≤1 0≤y≤1} 计算二重积
-
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f
-
设函数f(x)在[0 1]上有二阶连续导数 且f(0)=f(1)=0 f(x)≠0 x∈(0 1) 证明
-
已知f(x)是周期为5的连续函数 它在x=0的某个邻域内满足关系式 f(1+sinx)-3f(1-sinx)=8x+0(x) 且f(x)在x=
-
设函数f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=0 f(1)=1 证明:对于任意给定的正数a b 在开区
-
设函数f(x)在[0 1]上连续 在(0 1)内可导 且证明在(0 1)内存在一点ξ 使f(ξ)=0。