当前位置: 答题翼 > 问答 > 学历类考试 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

已知函数f(x)在[0 1]上连续 在(0 1)内可导 且f(0)=0 f(1)=1.证明:(I)存在ξ∈(0 1) 使得f(ξ)=1-ξ;(


已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:

(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;

(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得fˊ(η)fˊ(ζ)=1.

请帮忙给出正确答案和分析,谢谢!

参考答案
您可能感兴趣的试题
  • 已知函数f(x y)具有二阶连续偏导数 且f(1 y)=0 f(x 1)=0 其中D={(x y)|0≤x≤1 0≤y≤1} 计算二重积

  • 设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f

  • 设函数f(x)在[0 1]上有二阶连续导数 且f(0)=f(1)=0 f(x)≠0 x∈(0 1) 证明

  • 已知f(x)是周期为5的连续函数 它在x=0的某个邻域内满足关系式 f(1+sinx)-3f(1-sinx)=8x+0(x) 且f(x)在x=

  • 设函数f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=0 f(1)=1 证明:对于任意给定的正数a b 在开区

  • 设函数f(x)在[0 1]上连续 在(0 1)内可导 且证明在(0 1)内存在一点ξ 使f(ξ)=0。