当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

已知三阶实对称矩阵A的3个特征值为λ1=2 λ2 λ3=1且对应λ2 λ3的特征向量为 (1)求A的与λ1=2对应


已知三阶实对称矩阵A的3个特征值为λ1=2,λ2,λ3=1且对应λ2,λ3的特征向量为

(1)求A的与λ1=2对应的特征向量. (2)求矩阵A.

请帮忙给出正确答案和分析,谢谢!

参考答案
您可能感兴趣的试题
  • 已知三阶矩阵A的特征值为1,2,一3,求|A*+3A+2E|.

  • 设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.

  • 设A是3阶实对称矩阵 P是3阶可逆矩阵 B=P-1AP 已知a是A的属于特征值λ的特征向量 则B的

  • 已知三阶矩阵A的特征值为1 2 3 求|A3一5A2+7A|.

  • 设3阶实对称矩阵A的全部特征值为λ1=1 λ2=λ3=-1;ξ1=(1 2 -2)T为属于λ1的特征向量.求矩阵A.

  • 设三阶实对称矩阵A的各行元素之和均为3 向量α1=(-1 2 -1)T α2=(0 -1 1)T是线性方程组AX=0的两个解.(1)求A的