问题
-
高度≤150m的框架结构高层建筑,其楼层层间最大位移与层高之比Δu/h限值为()。A、1/500B、1/550C、1/8
-
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f
-
设函数f(x)和g(x)和[a b]上存在二阶导数 并且g"(x)≠0 f(a)=f(b)=g(a)=g(b)=0 试证 (1)在开区间(a b)
-
已知f(x)是周期为5的连续函数 它在x=0的某个邻域内满足关系式 f(1+sinx)-3f(1-sinx)=8x+0(x) 且f(x)在x=
-
设函数f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=0 f(1)=1 证明:对于任意给定的正数a b 在开区
-
设f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=f(1)=0 试证在(0 1)内至少存在一点 使
冀公网安备 13070302000102号