问题
-
设函数f(x)在区间[a b]上连续 则下列结论中哪个不正确?
-
设函数f(x) g(x)在[a b]上连续 且在[a b]区间积分∫f(x)dx=∫g(x)dx
-
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f
-
设f(x)在a≤x≤b上连续 在(a b)内二阶可导 证明在a
-
设f(x)在区间[a b]上连续 g(x)在区间[a b]上连续且不变号 证明至少存在一点ξ∈[a b] 使下式成立 (积分第一
-
设函数f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=0 f(1)=1 证明:对于任意给定的正数a b 在开区