问题
-
设{N(t),t≥0}是强度为λ的泊松过程,X(n)是独立同分布且取整数值的随机变量序列,令 试证{Y(t),t≥0}为一马
-
设时间序列Xt是由随机过程Xt=Zt+εt生成的,其中εt为一均值为0,方差为的白噪声序列,Zt是一均值为0,方差为,协
-
设X(t)=At+B,-∞<t<+∞,式中A,B是相互独立,且都服从正态分布N(0,σ2)的随机变量,试证明X(t)是一正态过程,并求
-
设Xt为一随机游走序列:Xt=Xt-1+εt,其中εt为一均值为0,方差为的独立同分布序列,且X0=0。证明:Xt与Xt+k的相关
-
设{N(t) t≥0}是强度为λ的泊松过程 定义随机过程Y(t)=N(t+L)-N(t) 其中常数
-
设{N(t) t≥0}为泊松过程 N(0)=0 试求它的有限维分布函数族。
冀公网安备 13070302000102号