问题
-
设连续函数列{fn(x))在[α,b]上一致收敛于f(x),而g(x)在(-∞,+∞)上连续。证明:{g(fn(x)) }在[α,b]上
-
设f(x)在[0 +∞)上可微 且0≤f(x)≤f(x) f(0)=0。证明:在[0 +∞)上f(
-
函数f(x)在[0 +∞)上可导 f(0)=1 且满足等式 。 (1)求导数f(x); (2)证明:当x≥0时 不等
-
设f(x)在a≤x≤b上连续 在(a b)内二阶可导 证明在a
-
设函数f(x)在[a b]上连续 在(a b)内可导 且f'(x)≤0 证明在(a b)内F'(x)≤0.
-
设 在x=0连续 且对任何x y∈R有f(x﹢y)=f(x)﹢f(y)证明:(1)f在R上连续;(2)f(x)=xf(1)。