当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设函数f(x)在[a b]上连续 在(a b)内可导 且f'(x)≤0 证明在(a b)内F'(x)≤0.


设函数f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)≤0,,证明在(a,b)内F'(x)≤0.

设函数f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)≤0,且有,证明在(a,b)内F'(x)≤0.

参考答案
您可能感兴趣的试题
  • 设二阶矩过程{X(t),t∈[a,b]}的自相关函数RX(s,t)在[a,b]×[a,b]上连续,若f(t)是[a,b]上的连续函数,试证:

  • 设函数f(x)在区间[a b]上连续 则下列结论中哪个不正确?

  • 设函数f(x) g(x)在[a b]上连续 且在[a b]区间积分∫f(x)dx=∫g(x)dx

  • 设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f

  • 设函数f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=0 f(1)=1 证明:对于任意给定的正数a b 在开区

  • 设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)证明:存在ξ∈(