问题
-
设 G 是一个给定的文法,S 是文法的开始符号,如果 S-x(其中 x∈V*),则称 x 是文法 G 的一 个() 。
-
设f(x)是-∞<x<∞上的连续函数。g(x)是a≤x≤b上的可测函数 则f(g(x))是可测函数
-
设函数f(x) g(x)在[a b]上连续 且在[a b]区间积分∫f(x)dx=∫g(x)dx
-
设函数f(x)和g(x)和[a b]上存在二阶导数 并且g"(x)≠0 f(a)=f(b)=g(a)=g(b)=0 试证 (1)在开区间(a b)
-
设f(x) g(x)在[a b]上连续 且f(x)≥g(x) 则( ). A.∫abf(x)dx≥∫abg(x)dx; B.∫abf(x)dx≤∫abg(x)dx; C.∫f(x
-
设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)证明:存在ξ∈(