问题
-
设{Fn}(n=1,2,…)是紧空间X中的一列闭集: 且每一个,证明:
-
设{αn}是有界数列,在l中定义算子T:x→y,其中 x={ξn}, y={αnξn} 证明T是紧算子的充分必要条件是{αn}→0
-
证明:如果F1 F2是距离空间X中的紧集 则存在 x0∈F1 y0∈F2 使 ρ(F1 F2)=ρ
-
证明:lp中的子集A准紧的充分必要条件是: (1)存在K>0 使得对一切x={ξ1 ξ2 …}∈A
-
证明:如果F1 F2是距离空间X中的紧集 则存在 x0∈F1 y0∈F2 使 ρ(F1 F2)=ρ
-
证明:如果F1 F2是距离空间X中的紧集 则存在 x0∈F1 y0∈F2 使 ρ(F1 F2)=ρ