当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

已知A为n阶方阵 r(A)=n-3 且α1 α2 α3是AX=O的三个线性无关的解向量 则()为A


已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=O的三个线性无关的解向量,则()为AX=O的基础解系.

A.α1+α2,α2+α3,α3+α1

B.α2-α1,α3-α2,α1-α3

C.2α2-α1,(1/2)α3-α2,α1-α3

D.α1+α2+α3,α3-α2, -α1-2α3

请帮忙给出正确答案和分析,谢谢!

参考答案
您可能感兴趣的试题
  • 设A为n阶正交矩阵 α1 α2 … αn为Rn的一组标准正交基 求证:Aα1 Aα2 … Aαn也

  • 设A为n阶方阵 A≠O且A≠I 其中I为单位矩阵.证明:A2=A的充分必要条件是r(A)+r(A-

  • 设A B是n阶方阵 且r(A)=r(B) 则

  • 设A为n阶方阵 A*为A的伴随矩阵 证明: n r(A)=n r(A*)= 1 r(A)=n-1 0 r(A)

  • 设A B均为n阶方阵 且|A|=2 |B|=-3 则|2A*B-1|=______(A*为A的伴随矩阵).

  • 设A是任一n(n≥3)阶方阵 A*是其伴随矩阵 又k为常数 且k≠0 ±1 则必有(kA)*等于A.kA*.B.kn-1A*.C.kn