问题
-
设A B都是n(n≥3)阶可逆方阵 C*表示方阵C的伴随矩阵 则(AB)*= (A)A*B*. (
-
设A为n阶方阵 A*为A的伴随矩阵 证明: n r(A)=n r(A*)= 1 r(A)=n-1 0 r(A)
-
设n阶矩阵A的伴随矩阵为A* 证明: (1)若|A|=0 则|A*|=0; (2)|A*|=|A|n-1.
-
证明:设A B为n阶方阵 且A为对称矩阵 BTAB也是对称矩阵。
-
设A B均为n阶方阵 且|A|=2 |B|=-3 则|2A*B-1|=______(A*为A的伴随矩阵).
-
设A为n阶矩阵(n≥2) A*为A的伴随矩阵 证明: