问题
-
设A=(aij)为n阶方阵,若任意n维非零列向量都是A的特征向量,证明:A为数量矩阵,即存在常数k,使A=kE.
-
设A为n阶方阵 A≠O且A≠I 其中I为单位矩阵.证明:A2=A的充分必要条件是r(A)+r(A-
-
设A为n阶方阵 A*为A的伴随矩阵 证明: n r(A)=n r(A*)= 1 r(A)=n-1 0 r(A)
-
设A B为n阶矩阵 且A为对称矩阵 证明BTAB也是对称矩阵.
-
设A B为n阶对称矩阵且B可逆 则下列矩阵中为对称矩阵的是( ) A.AB-1-B-1A B.AB-1+B-1A C.B-1AB D.(AB)2
-
设A B均为n阶方阵 且|A|=2 |B|=-3 则|2A*B-1|=______(A*为A的伴随矩阵).