当前位置: 答题翼 > 问答 > 学历类考试 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设λ是矩阵A的特征值 且齐次方程组(λE -A)x= 0的基础解系为η1 η2 则A的属于λ0的全部特征向量是()。


设λ是矩阵A的特征值,且齐次方程组(λE -A)x= 0的基础解系为η1,η2,则A的属于λ0的全部特征向量是()。

A.η1和η2

A. η1或η2

B. C1η1+C2η2(C1,C2为任意常数)

C. C1η1+C2η2(C1,C2为不全为零的常数)

请帮忙给出正确答案和分析,谢谢!

参考答案
您可能感兴趣的试题
  • 设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一为()。A.λ|A|nB.λ-1|A|nC.λ|A|D.

  • 设矩阵可逆,向量是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是矩阵A的伴随矩阵,试求a,b和λ的值.

  • 设λ1 λ2是矩阵A 的2 个不同的特征值 ξ η 是A 的分别属于λ1 λ2的特征向量 则以下选

  • 设A为n阶可逆矩阵 λ是A的一个特征值 则A的伴随矩阵A*的特征值之一为( )。A.λ|A|nB.λ-1|A|nC.λ|A|D

  • 设矩阵可逆 向量是矩阵A*的一个特征向量 λ是α对应的特征值 其中A*是矩阵A的伴随矩阵 试求a b和λ的值. 分析

  • 用幂法计算矩阵设方阵A的特征值均为实数 且满足λ1>λ2≥λ3…≥λn证明取平移量p=(λ2+λn)时 幂法收敛速