问题
-
设A B都是n阶可逆矩阵 则
-
设A B都是n(n≥3)阶可逆方阵 C*表示方阵C的伴随矩阵 则(AB)*= (A)A*B*. (
-
设A B均为n阶矩阵 下列结论中正确的是()。A.若A B均可逆 则A+B可逆B.若A B均可逆 则AB可逆C.若A+B
-
设A B均为n阶矩阵 且A可逆 若AB=O 则|B|≠0。()
-
设A为n阶非零矩阵 E为n阶单位矩阵 若A3=O 则 (A)E-A不可逆 E+A不可逆. (B)E-A不可逆 E+A可逆. (C)E-A可
-
设A为n阶可逆矩阵 则(一A)的伴随矩阵(一A)*等于( )。A.一A*B.A*C.(一1)nA*#
冀公网安备 13070302000102号