问题
-
设f(x)在[0,2]上连续,且f(x)+f(2-x)≠0,()。A.B.C.D.
-
设f(x)在[0,2]上连续,并且对任意的x∈[0,1]都有f(1-x)=-f(1+x),则A.1B.0C.-1D.A、B、C都不正确
-
设随机变量X的概率密度为 且求:(1)常数a b;(2)分布函数F(X)
-
设f(x)在[0 1]上连续 在(0 1)内可导 且满足 证明:存在一点ξ∈(0 1) 使得f(ξ)=2ξf(ξ).
-
设 在x=0连续 且对任何x y∈R有f(x﹢y)=f(x)﹢f(y)证明:(1)f在R上连续;(2)f(x)=xf(1)。
-
设f(x)在[0 1]上连续 在(0 1)内可导 且f(1)=0.证明:存在ξ∈(0 1)使2ξf'(ξ)+f(ξ)=0.