问题
-
设A为n阶矩阵 则A以零为其特征值是A为奇异矩阵(即 A =0)的:A.充分非必要条件 B.必要非
-
设A为n(n≥2)阶方阵 A*是A的伴随矩阵 则下列等式或命题中 正确的是 ( )。
-
设n阶矩阵A非奇异(n≥2) A*是矩阵A的伴随矩阵 则().A.(A*)*=|A|n-AB.(A*)*=|A|n+1AC.(A*)*=|A|n-2
-
设n阶矩阵A的伴随矩阵为A* 证明: (1)若|A|=0 则|A*|=0; (2)|A*|=|A|n-1.
-
设A为n(n≥2)阶可逆矩阵 交换A的第1行与第2行得矩阵B A* B*分别为A B的伴随矩阵 则 A.交换A*的第1列与第2列
-
设A为n阶矩阵(n≥2) A*为A的伴随矩阵 证明:
冀公网安备 13070302000102号