问题
-
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f
-
设f(x)在a≤x≤b上连续 在(a b)内二阶可导 证明在a
-
设函数f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=0 f(1)=1 证明:对于任意给定的正数a b 在开区
-
若f(x)在[a b]上连续 在(a b)内可导 则必存在ξ∈(a b) 使f(ξ)=0。()
-
设函数f(x)在[a b]上连续 在(a b)内可导 且f'(x)≤0 证明在(a b)内F'(x)≤0.
-
设f(x)在[a b]上连续 在(a b)内二阶可导 f(a)=f(b)=0 且有c(a
最新题目
-
The old man lost three sons in the accident. He died with a _____ heart.A.brokenB.bre..
-
The policeman saw the thief turn _____ the corner with a black bag.A.roundB.overC.offD...
-
求微分方程(x2+1)y'+2xy=4x2的通解。..
-
判断下列广义积分的敛散性:..
-
This region() at an average of 4 000 meters above sea level.A laysB liesC locatesD place..
-
Important () his discovery might be it was regarded as a matter of no account in hi..
冀公网安备 13070302000102号