当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设f(x)在[a b]上连续 在(a b)内二阶可导 f(a)=f(b)=0 且有c(a


设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且有c(a<c<b),使f(c)>0.证明至少存在一点ξ∈(a,b),使f&

设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且有c(a<c<b),使f(c)>0.证明存在c∈(a,b)使f‘(c)+f(c)=0.

参考答案
您可能感兴趣的试题
  • 设二阶矩过程{X(t),t∈[a,b]}的自相关函数RX(s,t)在[a,b]×[a,b]上连续,若f(t)是[a,b]上的连续函数,试证:

  • 设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f

  • 设f(x)在a≤x≤b上连续 在(a b)内二阶可导 证明在a

  • 设f(x)在[a b]上二阶可导 且f(a)=f(b)=0 又存在c∈(a b) 使f(x)0

  • 设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)证明:存在ξ∈(

  • 设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)