问题
-
设函数f(x)在(0 +∞)内具有二阶导数 且f(x)>0 令un=f(n)(n=1 2 …) 则
-
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0 f(0)≠0 f(0)≠0.证明:存在唯一的一组实数λ
-
已知函数f(x y)在点(0 0)的某个邻域内连续 且则( )。A.点(0 0)不是f(x y)的极值点B.点(0 0)是f
-
设fx(x y)在(x0 y0)的某邻域内存在且在(x0 y0)处连续 又fy(x y)存在 证明f(x y)在点(x0 y0)处可微
-
设函数f(x)和g(x)均在点x0的某一邻域内有定义 f(x)在x0处可导 f(x0)=0 g(x)在x0处连续 试讨论f(x)g(x)在x0
-
设函数f(x)在x=0的某邻域内具有二阶连续导数 且f(0)≠0 f'(0)≠0 f"(0)≠0 证明:存在唯一的一组实数λ