当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设f(x) g(x)在[0 1]上的导数连续 且f(0)=0 f(x)≥0 g(x)≥0.证明:对任何a∈[0 1] 有 ∫0ag(x)f(


设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f(x)≥0,g(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f(x)dx+∫01f(x)g(x)dx≥f(a)g(1)。

请帮忙给出正确答案和分析,谢谢!

参考答案
您可能感兴趣的试题
  • 设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0 f(0)≠0 f(0)≠0.证明:存在唯一的一组实数λ

  • 设函数f(x)在[0 1]上有二阶连续导数 且f(0)=f(1)=0 f(x)≠0 x∈(0 1) 证明

  • 设f(x)具有二阶连续导数 且f(0)=0 f'(0)=0 f"(0)>0 求 其中u是曲线.y=f(x)上点(x f(x))处的切线在

  • 设函数z=f(xy yg(x)) 函数f具有二阶连续偏导数 函数g(x)可导且在x=1处取得极值g(1)=1.求.

  • 设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)

  • 设函数f(x) g(x)均有二阶连续导数 满足f(0)>0 g(0)