问题
-
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0 f(0)≠0 f(0)≠0.证明:存在唯一的一组实数λ
-
设函数f(x)在[0 1]上有二阶连续导数 且f(0)=f(1)=0 f(x)≠0 x∈(0 1) 证明
-
设f(x)具有二阶连续导数 且f(0)=0 f'(0)=0 f"(0)>0 求 其中u是曲线.y=f(x)上点(x f(x))处的切线在
-
设函数z=f(xy yg(x)) 函数f具有二阶连续偏导数 函数g(x)可导且在x=1处取得极值g(1)=1.求.
-
设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)
-
设函数f(x) g(x)均有二阶连续导数 满足f(0)>0 g(0)