当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设函数f(x) g(x)均有二阶连续导数 满足f(0)>0 g(0)


设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f(0)=g(0)=0,则函数z=f(x)g(x)在点(0,0)处取得极小值的一个充分条件是

A.f"(0)<0,g"(0)>0.

B.f"(0)<0,g"(0)<0.

C.f"(0)>0,g"(0)>0.

D.f"(0)>0,g"(0)<0.

请帮忙给出正确答案和分析,谢谢!

参考答案
您可能感兴趣的试题
  • 设函数f(u v)具有二阶连续偏导数 z=f(x xy) 则

  • 设函数f(x)在[0 1]上有二阶连续导数 且f(0)=f(1)=0 f(x)≠0 x∈(0 1) 证明

  • 设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)证明:存在ξ∈(

  • 设函数z=f(xy yg(x)) 函数f具有二阶连续偏导数 函数g(x)可导且在x=1处取得极值g(1)=1.求.

  • 设z=f(2x-y)+g(x xy) 其中函数f(t)二阶可导 g(u v)具有连续二阶偏导数 求。

  • 设函数f(x) g(x)在[a b]上连续 在(a b)内具有二阶导数且存在相等的最大值 f(a)=g(a) f(b)=g(b)