问题
-
设连续函数列{fn(x))在[α,b]上一致收敛于f(x),而g(x)在(-∞,+∞)上连续。证明:{g(fn(x)) }在[α,b]上
-
设E×[0,1]上f(x,y)满足:f(x,y)是x∈E上的可测函数,且f(x,y)是y∈[0,1]上的连续函数,试证明: (i)f(x,y)是E×[0
-
设f(x)是-∞<x<∞上的连续函数。g(x)是a≤x≤b上的可测函数 则f(g(x))是可测函数
-
设函数f(x) g(x)在[a b]上连续 且在[a b]区间积分∫f(x)dx=∫g(x)dx
-
设函数f(x)和g(x)和[a b]上存在二阶导数 并且g"(x)≠0 f(a)=f(b)=g(a)=g(b)=0 试证 (1)在开区间(a b)
-
设函数f(x) g(x)是大于零的可导函数 且f(x)g(x)-f(x)g(x)
冀公网安备 13070302000102号