问题
-
设F(x)=P(X≤x)是连续型随机变量X的分布函数,则下列结论中不正确的是A、F(x)是不增函数B、0≤F(x)≤
-
设函数f(x)在区间[a b]上连续 则下列结论中哪个不正确?
-
设函数f(x) g(x)在[a b]上连续 且在[a b]区间积分∫f(x)dx=∫g(x)dx
-
设f(x)在[a b]上连续 且f(a)>0 f(b)<0 则下列结论中错误的是( ).A.至少存在一点x0∈(a b
-
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f
-
设F(x)=P(X≤x)是连续型随机变量X的分布函数 则下列结论中不正确的是A F(x)是不增函数B 0≤F(x)≤