问题
-
设f(x),g(x)都是E上可测函数,g(x)∈L,且在E上几乎处处成立f(x)≤g(x)。问f(x)是否可积?
-
设E×[0,1]上f(x,y)满足:f(x,y)是x∈E上的可测函数,且f(x,y)是y∈[0,1]上的连续函数,试证明: (i)f(x,y)是E×[0
-
设g(·)是可测集G上的可测函数 如果对任何 f∈LP(G) (1<P<∞) g(·)f(·)可
-
设f(x)是-∞<x<∞上的连续函数。g(x)是a≤x≤b上的可测函数 则f(g(x))是可测函数
-
证明f(x)为E上可测函数的充要条件是:对任一有理数r 集E(f>r)恒可测。如果假设对任一有理数r 集E(f=r)恒可测
-
L 可测集类 对运算()不封闭