问题
-
设∥x∥是Pn中的向量范数 A∈Pn×n 则∥Ax∥也是Pn中的向量范数的充要条件为A是可逆矩阵.
-
设∥x∥a ∥x∥b是Cn上的两个向量范数 a1 a2是两个正实数 证明: (1)max{∥x∥a
-
设{xk}是Banach空间X中的点列.证明:若对于每一个f∈X* |f(xk)|0 使得对于每一个f∈X* 有 |f(
-
试证明: 设{fn(x}}是R1上非负渐降连续函数列.若在有界闭集F上fn(x)→0(n→∞) 则fn(x)在F上一致收敛于零.
-
对于0-1背包问题的解向量X Xi=1表明选择物品1i。()
-
设f(x)是定义在上的连续函数 对任意的t∈R1 令Et={x∈E:f(x)>t} 试证明存在Rn中包含E的开集Gt 使得Et=E∩Gt.