问题
-
设f(x),g(x)都是E上可测函数,g(x)∈L,且在E上几乎处处成立f(x)≤g(x)。问f(x)是否可积?
-
设连续函数列{fn(x))在[α,b]上一致收敛于f(x),而g(x)在(-∞,+∞)上连续。证明:{g(fn(x)) }在[α,b]上
-
设E×[0,1]上f(x,y)满足:f(x,y)是x∈E上的可测函数,且f(x,y)是y∈[0,1]上的连续函数,试证明: (i)f(x,y)是E×[0
-
下列命题中 哪个是正确的?A.周期函数f(x)的傅立叶级数收敛于f (x)B.若f(x)有任意阶导
-
试证明: 设{fn(x}}是R1上非负渐降连续函数列.若在有界闭集F上fn(x)→0(n→∞) 则fn(x)在F上一致收敛于零.
-
试证明: 设f:X→X 且令f1(x)=f(x) f2(x)=f[f(x)] … fn(x)=f[fn-1(x)] ….若存在n0 使得fn0(x)=x 则f是一一映
冀公网安备 13070302000102号