问题
-
设函数f(x)在区间[a b]上连续 则下列结论中哪个不正确?
-
设f(x)是-∞<x<∞上的连续函数。g(x)是a≤x≤b上的可测函数 则f(g(x))是可测函数
-
设X1 … Xn是取自总体X的一个样本 其中X服从区间(0 θ)上的均匀分布 其中θ>0未知 求θ
-
设函数f(x) g(x)在[a b]上连续 且在[a b]区间积分∫f(x)dx=∫g(x)dx
-
设f(x)为区间[a b]上的连续函数 则曲线y=f(x)与直线x=a x=b y=0所围成的封闭图形的面积为()
-
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f