问题
-
如果二元函数z=f(x,y)在点M0(x0,y0)处取得极值,那么一元函数φ(x)=f(x,y0)及ψ(y)=f(x0,y)分别在点x=x0,y=y0
-
设函数f(x y)在点(x0 y0)处不连续 则f(x y)在点(x0 y0)处() A.极限不存
-
设fx(x y)在(x0 y0)的某邻域内存在且在(x0 y0)处连续 又fy(x y)存在 证明f(x y)在点(x0 y0)处可微
-
设函数z=f(x y)在点(1 1)处可微 且f(1 1)=1 设φ(x)=f(x f(x x)).求
-
关于函数y=f(x)在点x处连续 可导及可微三者的关系 正确的是( )
-
设函数y=f(x)由方程e2x+y-cos(xy)=e—1所确定 则曲线y=f(x)在点(0 1)处的法线方程为_______.