当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设f(z)在区域D内解析.C为D内的任意一条正向简单闭曲线 证明:对在D内但不在C上的任意点z0 等式 成立


设f(z)在区域D内解析.C为D内的任意一条正向简单闭曲线,证明:对在D内但不在C上的任意点z0,等式 成立

设f(z)在区域D内解析.C为D内的任意一条正向简单闭曲线,证明:对在D内但不在C上的任意点z0,等式=0成立

参考答案
您可能感兴趣的试题
  • 证明:如果函数f(z)=u+iv在区域D内解析,并满足下列条件之一,那么f(z)是常数. (1)f(z)恒取实值; (2)在D内解

  • 函数f(z)在0<|z|<1内解析 且沿任何圆周C:|z|=r 0<r<1的积分等于零 问f(z)

  • 证明:如果函数f(z)=u+iv在区域D内解析 并满足下列条件之一 那么f(z)是常数. (1)f(z)恒取实值; (2)在D内解

  • 指出下列函数f(z)的解析性区域 并求出其导数:

  • 如果u(x y)是区域D内的调和函数 C为D内以z0为中心的任何一个正向圆周|z-z0|=r 它的内部全部含于D 试证: (1

  • 设f(z)与g(z)在区域D内处处解析.C为D内任何一条简单闭曲线 它的内部全含于D.如果.f(z)=g(z)在C上所有的点处