问题
-
函数f(x)在[0 +∞)上可导 f(0)=1 且满足等式 。 (1)求导数f(x); (2)证明:当x≥0时 不等
-
设函数f(x)在闭区间[a b]上连续 在开区间(a b)内可导 且f(x)>0.若极限存在 证明: (1)在(a b)内f
-
已知函数f(x)在[a b]上连续 在(a b)内可导 且f(a)=f(b)=0 试证:在(a b)内至少有一点ζ 使得
-
设函数f(x)在x=a处可导 则函数|f(x)|在点x=a处不可导的充分条件是( ). (A)f(a)=0且f'(a)=0 (B)f(a)=
-
设函数f(x)在闭区间[0 1]上连续 在开区间(0 1)内可导 且f(0)=0 f(1)=1 证明:对于任意给定的正数a b 在开区
-
设函数f(x)在[a b]上连续 在(a b)内可导 且f'(x)≤0 证明在(a b)内F'(x)≤0.
冀公网安备 13070302000102号