问题
-
设无穷阵(aij)满足条件 在lp上定义线性算子T如下: y=Tx:{ηj}=∑k=1∞akjξk(j=1,2,3…), 其中x={ξ1,ξ2,…,ξ
-
设有c[0,1]上的算子序列{L),其中(兀x)(f)=x(fH÷),则{L}按强算子拓扑收敛于某一有界线性算子,但不按一致算子
-
设T是定义在巴拿赫空间E上的有界线性算子, α∈ρ(T), A=R(α,T) 设μ,λ满足μ(α-β)=1,则μ∈σ(A)的充分必要条件
-
设{αn}是有界数列,在l中定义算子T:x→y,其中 x={ξn}, y={αnξn} 证明T是紧算子的充分必要条件是{αn}→0
-
试求下列定义于L2[0 1]上的算子之伴随算子: (1)(Tx)(t)=∫0ts(x)ds; (2
-
设E是Hilbert空间H的线性子空间 f是E上的有界线性泛函.证明f有且只有一个到H上的保范延拓