问题
-
设A为n阶方阵 A*为A的伴随矩阵 证明: n r(A)=n r(A*)= 1 r(A)=n-1 0 r(A)
-
设n阶矩阵A的伴随矩阵为A* 证明: (1)若|A|=0 则|A*|=0; (2)|A*|=|A|n-1.
-
设A为n(n≥2)阶可逆矩阵 交换A的第1行与第2行得矩阵B A* B*分别为A B的伴随矩阵 则 A.交换A*的第1列与第2列
-
设A为n阶矩阵(n≥2) A*为A的伴随矩阵 证明:
-
设A=(α1 α2 α3 α4)是4阶矩阵 A*为A的伴随矩阵 若(1 0 1 0)T是线性方程组Ax:O的一个基础解系 则A”
-
设λ1 λ2是n阶矩阵A的两个不同的特征值 ξ η是A的分别属于λ1 λ2的特征向量 则()。