当前位置: 答题翼 > 问答 > 大学本科 > 正文
目录: 标题| 题干| 答案| 搜索| 相关
问题

设向量α1 α2 … αt是齐次方程组AX=0的一个基础解系 向量β不是方程组AX=0的解 即Aβ≠0.试证明:向量


设向量α1,α2,…,αt是齐次方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt,线性无关.

请帮忙给出正确答案和分析,谢谢!

参考答案
您可能感兴趣的试题
  • 设4元非齐次线性方程组Ax=b有3个不同解α1,α2,α3,其中α1=(1,2,3,4)T,α2+α3=(2,3,4,5)T,且r(A)=3,则Ax=b的通

  • 设β 1 β2是线性方程组Ax =b的两个不同的解 α1 α2 是导出组Ax = 0的基础解系 k

  • 设向量组α1 α2 … αt是齐次线性方程组Ax=0的一个基础解系 向量β不是方程Ax=0的解 即Aβ≠0.试证明:向量β β+α1

  • 设β1 β2是非齐次线性方程组Ax=b的两个不同解 α1 α2是对应齐次方程组Ax=0的基础解系 k1 k2为任意常数 则方程

  • 已知β1 β2是非齐次线性方程组Ax=b的两个不同的解 α1 α2是其导出组Ax=0的一个基础解系 C1 C2为任意常数 则方程组Ax=b的通解可以表示为()。

  • 设三阶实对称矩阵A的各行元素之和均为3 向量α1=(-1 2 -1)T α2=(0 -1 1)T是线性方程组AX=0的两个解.(1)求A的